Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.

Identifieur interne : 000437 ( Main/Exploration ); précédent : 000436; suivant : 000438

Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.

Auteurs : Jie Wang [République populaire de Chine] ; Huaitong Wu [République populaire de Chine] ; Yingnan Chen [République populaire de Chine] ; Tongming Yin [République populaire de Chine]

Source :

RBID : pubmed:32719704

Abstract

Although the CRISPR/Cas9 system has been widely used for crop breeding, its application for the genetic improvement of trees has been limited, partly because of the outcrossing nature and substantial genomic heterozygosity of trees. Shanxin yang (Populus davidiana × P. bolleana), is a commercially important poplar clone that is widely grown in northern China. An established transformation protocol for this interspecific hybrid enables researchers to simultaneously investigate the efficiency and specificity of the CRISPR/Cas9-mediated manipulation of a highly heterozygous genome. Using the phytoene desaturase gene (PDS) as an example, we revealed that the CRISPR/Cas9 system could efficiently edit the Shanxin yang genome. Two sgRNAs were designed and incorporated into a single binary vector containing the Cas9 expression cassette. Among 62 independent transgenic lines, 85.5% exhibited an exclusively albino phenotype, revealing the total loss of PDS function. The Illumina sequencing results confirmed the targeted mutation of PdbPDS homologs induced by CRISPR/Cas9, and small insertions/deletions were the most common mutations. Biallelic and homozygous knockout mutations were detected at both target sites of the T0 transformants. Off-target activity was detected for sgRNA2 with a frequency of 3.2%. Additionally, the SNP interference of targeting specificity was assessed based on the sequence variation among PdbPDS homologs. A single mismatch at 19- or 10-bp from the PAM was tolerated by the CRISPR/Cas9 system. Therefore, multiple homologous genes were simultaneously edited despite the presence of a mismatch between the sgRNA and the target site. The establishment of a viable CRISPR/Cas9-based strategy for editing the Shanxin yang genome will not only accelerate the breeding process, but may also be relevant for other economically or scientifically important non-model plants species.

DOI: 10.3389/fpls.2020.00996
PubMed: 32719704
PubMed Central: PMC7347981


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.</title>
<author>
<name sortKey="Wang, Jie" sort="Wang, Jie" uniqKey="Wang J" first="Jie" last="Wang">Jie Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Huaitong" sort="Wu, Huaitong" uniqKey="Wu H" first="Huaitong" last="Wu">Huaitong Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32719704</idno>
<idno type="pmid">32719704</idno>
<idno type="doi">10.3389/fpls.2020.00996</idno>
<idno type="pmc">PMC7347981</idno>
<idno type="wicri:Area/Main/Corpus">000170</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000170</idno>
<idno type="wicri:Area/Main/Curation">000170</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000170</idno>
<idno type="wicri:Area/Main/Exploration">000170</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.</title>
<author>
<name sortKey="Wang, Jie" sort="Wang, Jie" uniqKey="Wang J" first="Jie" last="Wang">Jie Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Huaitong" sort="Wu, Huaitong" uniqKey="Wu H" first="Huaitong" last="Wu">Huaitong Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although the CRISPR/Cas9 system has been widely used for crop breeding, its application for the genetic improvement of trees has been limited, partly because of the outcrossing nature and substantial genomic heterozygosity of trees. Shanxin yang (
<i>Populus davidiana</i>
×
<i>P. bolleana</i>
), is a commercially important poplar clone that is widely grown in northern China. An established transformation protocol for this interspecific hybrid enables researchers to simultaneously investigate the efficiency and specificity of the CRISPR/Cas9-mediated manipulation of a highly heterozygous genome. Using the phytoene desaturase gene (
<i>PDS</i>
) as an example, we revealed that the CRISPR/Cas9 system could efficiently edit the Shanxin yang genome. Two sgRNAs were designed and incorporated into a single binary vector containing the Cas9 expression cassette. Among 62 independent transgenic lines, 85.5% exhibited an exclusively albino phenotype, revealing the total loss of PDS function. The Illumina sequencing results confirmed the targeted mutation of
<i>PdbPDS</i>
homologs induced by CRISPR/Cas9, and small insertions/deletions were the most common mutations. Biallelic and homozygous knockout mutations were detected at both target sites of the T
<sub>0</sub>
transformants. Off-target activity was detected for sgRNA2 with a frequency of 3.2%. Additionally, the SNP interference of targeting specificity was assessed based on the sequence variation among
<i>PdbPDS</i>
homologs. A single mismatch at 19- or 10-bp from the PAM was tolerated by the CRISPR/Cas9 system. Therefore, multiple homologous genes were simultaneously edited despite the presence of a mismatch between the sgRNA and the target site. The establishment of a viable CRISPR/Cas9-based strategy for editing the Shanxin yang genome will not only accelerate the breeding process, but may also be relevant for other economically or scientifically important non-model plants species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32719704</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.</ArticleTitle>
<Pagination>
<MedlinePgn>996</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00996</ELocationID>
<Abstract>
<AbstractText>Although the CRISPR/Cas9 system has been widely used for crop breeding, its application for the genetic improvement of trees has been limited, partly because of the outcrossing nature and substantial genomic heterozygosity of trees. Shanxin yang (
<i>Populus davidiana</i>
×
<i>P. bolleana</i>
), is a commercially important poplar clone that is widely grown in northern China. An established transformation protocol for this interspecific hybrid enables researchers to simultaneously investigate the efficiency and specificity of the CRISPR/Cas9-mediated manipulation of a highly heterozygous genome. Using the phytoene desaturase gene (
<i>PDS</i>
) as an example, we revealed that the CRISPR/Cas9 system could efficiently edit the Shanxin yang genome. Two sgRNAs were designed and incorporated into a single binary vector containing the Cas9 expression cassette. Among 62 independent transgenic lines, 85.5% exhibited an exclusively albino phenotype, revealing the total loss of PDS function. The Illumina sequencing results confirmed the targeted mutation of
<i>PdbPDS</i>
homologs induced by CRISPR/Cas9, and small insertions/deletions were the most common mutations. Biallelic and homozygous knockout mutations were detected at both target sites of the T
<sub>0</sub>
transformants. Off-target activity was detected for sgRNA2 with a frequency of 3.2%. Additionally, the SNP interference of targeting specificity was assessed based on the sequence variation among
<i>PdbPDS</i>
homologs. A single mismatch at 19- or 10-bp from the PAM was tolerated by the CRISPR/Cas9 system. Therefore, multiple homologous genes were simultaneously edited despite the presence of a mismatch between the sgRNA and the target site. The establishment of a viable CRISPR/Cas9-based strategy for editing the Shanxin yang genome will not only accelerate the breeding process, but may also be relevant for other economically or scientifically important non-model plants species.</AbstractText>
<CopyrightInformation>Copyright © 2020 Wang, Wu, Chen and Yin.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Huaitong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yingnan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CRISPR/Cas9</Keyword>
<Keyword MajorTopicYN="N">PDS gene</Keyword>
<Keyword MajorTopicYN="N">Populus davidiana × P. bolleana</Keyword>
<Keyword MajorTopicYN="N">gene editing</Keyword>
<Keyword MajorTopicYN="N">off-target</Keyword>
<Keyword MajorTopicYN="N">single nucleotide polymorphism effect</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32719704</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00996</ArticleId>
<ArticleId IdType="pmc">PMC7347981</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Death Dis. 2018 Oct 27;9(11):1099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30368519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):1917-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26864017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Apr;16(4):902-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28921815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Nov 30;16:258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 17;6:31481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27530958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10092-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Dec 12;8:2135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29312390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Aug 17;337(6096):816-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Dec 01;6:38169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27905529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Sep;31(9):822-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23792628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Apr;32:76-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25437637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Genome. 2016 Nov;9(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27902801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2018 May;19(5):275-276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29382940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Sep;31(9):839-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23934178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Apr 10;3:17043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28394310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jun;174(2):935-942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28584067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 03;8:1364</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28824692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 02;9:268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29552023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 28;7(1):482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28352080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Dec 09;3(12):2233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24122057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1994 Apr;16(4):664-8, 670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8024787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D1152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Nov;30(11):2037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21717184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Nov 25;291(48):24851-24856</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27756838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Aug;12(6):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 06;9:284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29559988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2015 Jan-Feb;33(1):41-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25536441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Feb 14;13:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22333067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Plant Sci. 2020 Jan 12;8(1):e11314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31993256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2018 May;60(5):376-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29226588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Sep 12;10(9):1246-1249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28624544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 May;17(5):858-868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30291759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Nov 23;9:1732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30532764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Jan;36(1):117-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27699473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 Mar 12;15:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Nov;39(21):9275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):863-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Nov 29;14:327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Mol Biol Transl Sci. 2017;149:111-132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28712493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Aug 25;7:12617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27558837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2018 Mar;37(3):553-563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29333573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2018 Mar;96(4-5):445-456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29476306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 18;8:1780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Apr;16(4):844-855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28905515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 May 18;12(5):e0177966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28542349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2019 Nov 8;6:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31728198</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Jie" sort="Wang, Jie" uniqKey="Wang J" first="Jie" last="Wang">Jie Wang</name>
</noRegion>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
<name sortKey="Wu, Huaitong" sort="Wu, Huaitong" uniqKey="Wu H" first="Huaitong" last="Wu">Huaitong Wu</name>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000437 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000437 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32719704
   |texte=   Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32719704" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020